SUFFICIENT CONDITIONS FOR THE OSCILLATION OF
DELAY DIFFERENCE EQUATIONS

CH. G. PHILOS, I. K. PURNARAS AND I. P. STAVROULAKIS

ABSTRACT. The most important result of this paper is a new oscillation cri-
terion for delay difference equations. This criterion constitutes a substantial
improvement of the one by Ladas, Philos and Sficas [J. Appl. Math. Simule-
tion 2 (1989), 101-111] and should be looked upon as the discrete analogue of
a well-known oscillation criterion for delay differential equations.

1. INTRODUCTION

In the last two decades, the study of difference equations has been the focus of
great attention by many researchers. Besides its mathematical interest, the theory
of difference equations is also very interesting because of the fact that difference
equations arise in various fields of applied sciences more frequently than ever. In
particular, the study of the oscillation of solutions of difference equations has at-
tracted a lot of activity.

It is the main purpose of this paper to establish a new oscillation criterion for lin-
ear delay difference equations with variable coefficients. This criterion substantially
mmproves the one by Ladas, Philos and Sficas [16] and should be looked upon as
the discrete analogue of a well-known integral oscillation result (see Ladas [12], and
Koplatadze and Chanturija [11]) for first order linear delay differential equations
with variable coefficients.

Consider the delay difference equation

(E) Tn41 — Tp + PuTn—i =0,

where (pn)n>0 is a sequence of nonnegative real numbers and k is a positive integer.

By a solution of (E), we mean a sequence (T.)n>— of real numbers which
satisfies (E) for all n > 0.

A solution (5 )n>—x of (E) is said to be oscillatory if the terms =, of the sequence
are neither eventually positive nor eventually negative, and otherwise the solution
is called nonoscillatory.

In 1989, Erbe and Zhang [9] established that all solutions of (E) are oscillatory
if

kk

(H(]) h_’fglo%fpn e W
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or

n
G lim su ; > 1.
( ) "'_'°°p iH—;—kp

In the same year 1989, Ladas, Philos and Sficas [16] proved that o sufficient
condition for all solutions of (E) to be oscillatory is that

= K
(H) 117}{1_’1013-{. E-;:nz_kpi > _(k-l- 1)+ °
Observe that condition (H) improves (Hg).
In particular, let us consider the special case where (E) is autonomous, i.e. the
case of the delay difference equation

(Eo) Tnt1 — Tn +PTn—k =0,
where p is a positive real number and k is e positive integer. In this special case,
both conditions (Hp) and (H) reduce to
kk

(h) p> W )
which is a necessary and sufficient condition for the oscillation of all solutions of
(Eo). See Ladas [13]; see, also, Erbe and Zhang [9], Ladas [14], and Ladas, Philos
and Sficas [16].

Consider now the delay differential equation

D) '(t) + p(t)z(t — ) = 0,

where p is a nonnegative continuous real-valued function on the interval [0, co) and
T is a positive constant.
It is well-known (see Myskis [21]; see, also, [10] or [17]) that the condition

(A0) rlimintp(t) > -

implies the oscillation of all solutions of (D). Another condition, which ensures that
all solutions of (D) are oscillatory, is

t
(B) ].imsup/ p(s)ds > 1.
t—oo Ji—r
(See Ladas, Lakshmikantham and Papadakis [15]; see, also, [10] or [17].)
It is noteworthy that conditions (Hp) and (G) are the discrete versions of (Ag)
and (B) respectively.
Furthermore, a sharp sufficient condition for all solutions of (D) to be oscillatory

is that
t

Gk 1
) timinf [ p(e)ds >
see Ladas [12], and Koplatadze and Chanturija [11]. It is obvious that condition
(A) is implied by (Ag).

As it has been pointed out in [16], condition (H) is a discrete analogue of (A).
However, in order to prove that (H) is a sufficient condition for all solutions of (E)
to oscillate, the authors in [16] use the well-known inequality of the arithmetic and
geometric means. Note that, in the continuous case, in order to prove that (A) is
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a sufficient condition for the oscillation of all solutions of (D), no such (analogue)
inequality is used. Due to this fact, it seems that the procedure used to establish
(H) in [16] may not be the exact discrete analogue of the one used to establish
condition (A).

Following the discrete version of the procedure used in the continuous case and
without using the arithmetic mean - geometric mean inequality, we establish here
a new oscillation criterion for the difference equation (E), which may be considered
as the discrete analogue of the oscillation condition (A) for the differential equation
(D). Note that our oscillation criterion essentially improves the oscillation result by
Ladas, Philos and Sficas in [16].

Since 1989 and motivated by the results in [9] and [16], a number of related
papers has been published. We choose to refer to the following papers (presented
in chronological order): Philos [22, 23], Lalli and Zhang [18], Yu, Zhang and Qian
[32], Chen and Yu [2], Cheng and Zhang [5], Domshlak [7], Yu, Zhang and Wang
[33], Cheng, Xi and Zhang [4], Stavroulakis [25], Zhang, Liu and Cheng [35], Wong
and Agarwal [34], (see also [1]), Tang [26], Cheng, Liu and Zhang [3], Domshlak [8],
Tang and Yu [27, 28, 29|, Cheng and Zhang [6], Yu and Tang [31], Luo and Shen
[19,2 0], Shen and Stavroulakis [24], Tang and Zhang [30], and the references cited
therein.

The paper is organized as follows. Section 2 is devoted to the statement of our
results and to some extensive comments about them. The proofs of our results are
given in Section 3. Section 4 contains the application of the results to the special
case of periodic delay difference equations. Two examples, in which our oscillation
criterion can be applied while condition (H) fails to hold, are presented in Section
5. In the last section (Section 6), the analogues results for advanced difference
equations are formulated (without their proofs).

2. STATEMENT OF THE RESULTS AND COMMENTS

Qur first result is the following proposition.

Proposition. (i) A necessary condition for (E) to have at least one nonoscilla-
tory solution is that

(Po) Pn <1 for all large n.
(ii) Let (Po) be satisfied and assume that
n-1 1/k o
(C1) hﬂsolip L_l;[_k(l —Pz')] S i

Then a necessary condition for (E) to have at least one nonoscillatory solution is
that

(P) lim supp, < 1.
Note: Clearly, (P) implies (Po).
The above proposition can equivalently be stated as follows:

(1)" Al solutions of (E) are oscillatory if (Po) fails.
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(1)’ Let (Po) be satisfied and assume that condition (Cy) holds. All solutions of
(E) are oscillatory if (P) fails, i.e. if lmsupp, = 1.

n—oo

Based on this result, while looking for sufficient conditions for the oscillation of
all solutions of (E), we can see that it suffices to consider the case where (Pg) holds
only. Furthermore, provided that (Pg) is satisfied and, in addition, condition (C;)
holds, we may confine our discussion only to the case where (P) is fulfilled.

Note that (P) is equivalent to the condition: There ezist numbers v € (0, 1) such
that pp, < v for ell large n.

Next, the following basic lemma is stated.

Lemma 1. Let (P) be satisfied and assume that condition (C;) holds and that:
(C2) There exists a constant p € (0,1) so that, for any number v € (0,1) such
that p, < for all large n, it holds

n—1

H (1 - %p,—) < py for dll large n.

i=n—k

Then, for every nonoscillatory solution (zn)n>—r of (E), we have

The proof of the following result is contained in the proof of Theorem 1 in the
paper by Ladas, Philos and Sficas [16] (see, also, the proof of Theorem 7.5.1 in the
book by Gyéri and Ladas [10]).

Assume that there erists a positive constant M such that

Z p; > M for all large n

i=n—k

and let (Tn)n>—r be a nonoscillatory solution of (E).
Then, for each sufficiently large n, there erists an integer n* withn—k <n* <n
so that
In=—k 4

< —.
Tp= M2

In some papers, a false statement has been used instead of the above (correct)
result. This fact has leaded to certain erroneous proofs as well as to some incorrect
results. For a detailed discussion, the reader is referred to Domshlak [8], and Cheng
and Zhang [6).

The following lemma is an immediate consequence of the above result.

Lemma 2. Assume that

(Cs) h,j"i}o%f Z »; > 0.
i=n—k
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Then, for every nonoscillatory solution (z,)n>—k of (E), there ezists a sequence
of nonnegative integers (n,),>o with lim n, = co so that
- v—00

. T, _
lim sup—=£=% < 0.

v—oo In,

In [8], Domshlak presented the discrete analogue of the well-known Koplatadze-
Chanturija lemma, (see [11]) for delay differential equations. More precisely, it has
been proved in [8] that, if M is a positive constant such that

n—1
Z pi =2 M for all large n,
i=n—k
then every nonoscillatory solution (z,),>—x of (E) satisfies
Pk 4
PN < m for all large n.

A similar result with the constant M ~* in place of 4/M? has been given by Cheng
and Zhang [6]. So, it follows that, under the condition

n—1
(Cs) lim inf ._Z_kpi >0,

every nonoscillatory solution (z,)n>—x of (E) satisfies

limsupx”_k < oo.
n—+00 Iﬂ
Note that (C3) is stronger than condition (Cs)-
A combination of Lemmas 1 and 2 leads to the following oscillation criterion for
the solutions of (E). This oscillation criterion is the most important result of our
paper.

Theorem. Let (P) be satisfied and assume that conditions (C1) and (Cz) hold.
Moreover, suppose that condition (C3) holds.
Then all solutions of (E) are oscillatory.

Consider the delay differential inequalities

M< Tnt1 — Tp + Prln—k <0
and
(1)2 Tnyl — Tp +pnzn—k 2 0.

By a solution of (I)< [respectively, of (I)>], we mean a sequence of real numbers
(Tn)n>—r which satisfies (I)< [resp., (I)>] for all n > 0.
Our theorem can be stated in a more general form as follows:

Let (P) be satisfied and assume that conditions (C1) and (Cs) hold. Moreover,
suppose that condition (C3) holds.

Then (I)< has no eventually positive solutions, and (I)> has no eventually neg-
ative solutions.

As far as the existence of nonoscillatory solutions of (E) is concerned, we have
the following result established by Ladas, Philos and Sficas [16]:
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Assume that
k—1

an+j >0 fornz=0
7=0

and let there exist a number «v € (0,1) so that
Pn <7y foreveryn>0

and
n—1 1
H (1——1’)’,—)2'}' foralln>0,
i=n—k v
where

Dn=0n forn>0, and pPp,=py for —k<n<0.
Then (E) has a positive solution (T,)n>—r such that
Iim z, =0.

n—0o0

In the special case of the difference equation (Eg), the assumptions of the above
result are satisfied if

kk
oo
P= T
(see Ladas, Philos and Sficas [16]). Note that the last condition is also a necessary
condition for the existence of a positive solution of (E).

Consider now the special case of the difference equation (Ep). In this case, both
conditions (Py) and (P) reduce to
p<l
Moreover, we immediately see that condition (C3) holds by itself. We can also
verify that, when p < 1, condition (C;) is equivalent to (h). Furthermore, provided
that p < 1, (h) implies condition (Cz). To show this fact, we first observe that
kk

max [A(1—A)*] = [A1—N)*] A=1/(e+1) = (5 D)L

Agfo,1]
and so

1 K=
® A-N'<3 Froem

This inequality will also be used below in this section as well as in the next section.
Let us suppose that p < 1 and that (h) is satisfied. Set

1 k*
T p (E+1)RC

(Clearly, i is a constant with g € (0,1).) Let v € (0,1) be an arbitrary number
with p < . Then, by using the inequality (I), we find

s LNE 0 A O B
¥) S DR T [p ] T T

Hence, (C2) is always fulfilled.

for A € (0,1).

I
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From our proposition it follows that p < 1 is a necessary condition for (Ep) to
have at least one nonoscillatory solution. Thus, all solutions of (Eg) are oscillatory
if p > 1. Moreover, when p < 1, our theorem guarantees that (h) suffices for the
oscillation of all solutions of (Eg). So, we have arrived at the well-known result that
(h) is a sufficient condition for all solutions of (Eg) to be oscillatory. Note that (h)
is also a necessary condition in order that all solutions of (Eg) to be oscillatory.

Next, we will show that, provided that (P) holds, condition (H) implies conditions
(C1) and (Cz). To this end, let us assume that (P) holds and that condition (H)
is satisfied. By using the well-known inequality of the arithmetic and geometric
means, we find for all large n

n-1 1k n—1
[H(l—pi)] Z(l pz)—l—— sz

i=n—k z—n —k 1=-n.--

and consequently, by taking into account (H), we obtain

n—1 1/k
: L R
hmsup[ﬂ (1—103-)] Sl—hglogf( Z p;)<1 Fre

n—0o0 ;
i=n—k i=n—k

which means condition (C;) holds. Furthermore, because of (H), we can choose a
constant y € (0,1) so that

1 = 1 kF
= 5 S e :
A z_E“—-k'p, PR FE) for all large n

Consider an arbitrary number v € (0, 1) such that p, < « for all large n, i.e. such
that 1 — %pn > 0 for n sufficiently large. By using again the inequality of the
arithmetic and geometric means, we obtain for all large n

E 6] -[36ER]

i=n—k i=n—k

5G] =[]

Since v > p,, for all large n, we have eventually

3
=
"
AT
[y
|
|
3
Mo ok
|

IA

n—1 k
1 1 k
ke o Pogeln o wo s e
7> ki_z_kp’ = G+ e
and so
1 Kk
0<—-—mF%— < 1.

py (k+ 1)+
Thus, an application of (I) gives
[ 1 k* r 1 k"
=71

e W . = I.L’Y.
py (k+1)k+1 = (k—-{-k].';-j"f'_l (k+1)k+1
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Hence, it holds
n—1

H (1 — %p,;) < pvy for all large n

i=n—k
and consequently condition (Cz) is also satisfied.
Finally, since

n n—1 n—1
Z Di = Z Pi=k(?t‘ Z p,—) for all large n,

i=n—k i=n~k i=n—k

it follows immediately that condition (H) implies condition (Cgz).
In Section 5, we will give two examples, in which (P) is satisfied and conditions
(C1), (C2) and (Cj3) hold, while condition (H) fails to hold.

3. PROOF OF THE PROPOSITION AND LEMMA 1

Let (%7)n>—k be a nonoscillatory solution of (E). As the negative of a solution of
(E) is also a solution of (E), we may (and do) assume that (x,)n>—_k is eventually
positive. Then eventually

Tp4l — Tn = —PpTn—k <0
and so (Zn)n>—k is eventually decreasing. It follows from (E) that eventually
Tntl — Tn = —PnTn—k < —Pnln
and consequently we have

%ﬁﬂgl—pn for all large n.

In particular, this implies that 1 — p, > 0 for all large n, i.e. (Pg) holds true (and
so Part (i) of our proposition has been proved).
Next, assume that condition (C;) holds. Then we can choose a number v, with

k
ﬁm<70<lsothat

_ 1/k
H (1—mp) <1__1-._._.,k.:k_ for all large n
i B R =
Thus, we obtain for n sufficiently la.rge

Tn _ Tﬁ. If.-l—l H (1 )<[ kk k
Tk & Yo (B+1)F+L | °

i=n—k z_n—k

Since 0 < 3= - 7 +1)’=+1 < 1, from (I) it follows that

[1 1 R ]" - 1 B
Yo (k + 1)k+1 - ;1; 2 {k+];3k+1 (k+ 1)k+1 o

Hence, we get

< 7, for n sufficiently large,
Tn—k
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ie.
Tl 1 for all large n.
Tn Yo

Furthermore, (E) gives eventually

1
T4l — Tn = —Paln—k < —— Dnln
Yo
and so we have
1
i <1-— —p, for all large n.
ZTn Yo
In particular, this guarantees that 1 — %pn > 0 for all large n, i.e. p, < 7y, for

n sufficiently large. This ensures that limsupp, < 7y < 1 and consequently (P) is

n—oo
satisfied (and so Part (ii) of the proposition has been showed).
Now, let us suppose that condition (Cs) is also satisfied. By this condition (for
Y =), we find that eventually
= n—1 - n—1 1
n i+1
- o 1— —p; | < pyp-
I=== ( P ) 0

Ty
Rk g —n—k

IA

Thus, we have

_ 1
Tk for all large n.
Tn Ko

Hence, it follows from (E) that eventually

Tntl — Tp = —Prln—k < —Emn
1]

and consequently
" 1
i <1-— —p, for all Jarge n.
Tn HYo
So, we always have 1 — F—io Pn > 0 eventually, i.e. it holds p, < py, for all large n.

Thus, because of condition (Cz) (for v = py,), we obtain, for n sufficiently large,

n—1 n—1

Tn Tita ( 1 ) 9
= =t 1= —pi | < p(py0) = £70-
R i:lr:[—k i i=11;[—k Ko ’ °
Therefore,
Sk b 1 for all large n.
Tn EYo

Finally, by induction, it follows that

iy S : for all largen (m=0,1,2,...).

Tn .u'mFYO
Since p € (0,1), we have lim ™ = 0. Hence, we conclude that
m—o0
v B
lim 2% = oo
n—00 _'n,n

(and so the proof of Lemma 1 is complete).
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4. THE SPECIAL CASE OF PERIODIC DELAY DIFFERENCE
EQUATIONS

Let us concentrate our interest on the special case where the sequence (pr)n>0
is k-periodic.

Both conditions (Pg) and (P) reduce to
(P) pr<1 (r=0,1,...k—1).
By our proposition, we have the following result:

Assume that the coefficient sequence (Pr)n>o s k-periodic. Then (P) is a nec-
essary condition for (E) to have at least one nonoscillatory solution.

Moreover, provided that (P) is satisfied, conditions (C;) and (Cz) become re-
spectively

_ k—1 1/k kk
(C1) [g(l—m)] <1‘"W
and _

(C2) There ezists a constant p € (0,1) so that, for any number v € (0,1) such
that p, < (r =0,1,...,k — 1), it holds

k—1 1
II (1 - _Pr) < py.
=0 ’Y

Furthermore, we observe that

n—1 k—1
i pi = Z pi=Zpr for all large n

i=n—k i=n—k r=0

and so, provided that (p,)»>0 is not identically zero, condition (C3) holds by itself.
Hence, our theorem leads to the following result:

Assume that the coefficient sequence (Pp)n>o is k-periodic, and let (P) be sat-
isfied. Then conditions (C;) and (Cz) are sufficient for all solutions of (E) to be
oscillatory.

5. EXAMPLES

In this section, we will give two examples, in which all assumptions of our theorem
(i.e. conditions (P), (Cy), (C2) and (Cs)) are satisfied while condition (H) fails.

Example 1. Consider the delay difference equation (E) with k > 1 and assume
that the coefficient sequence (prn)n>0 @8 k-periodic with

Po=96 and pr=po=..=pr_1=0,

where § is a constant such that
E

kk kk
— T —— c<dlt T . N
1 [1 (k + 1)k+1 ] <$ - k (k + 1)k-§~1
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Note that it holds
k
k* k*
e RV -
0<1 [ (k+1)k+1] <k (k+1)k+1<1
(and s0 0 < § < 1). We immediately observe that (P) becomes
pr<l (r=0,1,..,k-1)
and consequently condition (P) is always satisfied. Moreover, (C;) reduces to
kk

) 1/k L
e cime B — §)L/E SR -
Lzﬂ (1 Pr):l <1 ie. (1-6)" <1 o P

(k+1)k+1°
or
E* k
§>1-— [1___'_(k+1)’=+1}

and so condition (Cy) is also satisfied. Now, we observe that (Cs) becomes: There
exists a constant p € (0,1) so that, for any number - € (6,1), it holds

k-1
1 § ; 1( 6)
l——p )=1-=-<py, ie. —(1——)<upu.
H( ’TP) Y atl ¥ Y a

=0
Define
f(y) = 1(1 6) for y € (6,1)
4 ~ ” 4 s 1)
Then
1
fim= —z(r—20) fory€(6,1).
But, it is not difficult to see that
Kk 1
R O |
(k+1)k+1 <3
This guarantees that § < ; and consequently we have
bx26< 1,
So,
f'(v)>0forye (6,26), and f'(v)<0 forye (26,1)

and hence f s strictly increasing on (§,26), and f is strictly decreasing on (26, 1).
Thus, (Cz) holds if and only if
O<p=f(26) <1,
ie. if and only if
1

6);.

It is a matter of elementary calculus to show that

1_k—k : < §
(k+1F+1| S
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(Note that k > 1.) This yields
% k
k ] 1 3 1

T4 4

Hence, condition (Cz) is satisfied. Next, we see that condition (Cgz) holds by itself.

On the other hand, (H) becomes

k—1

1 P 1 &
- —_— e 6>
kgpf O A A P

or

kk
(k +1)k+1
and consequently condition (H) fails to hold.

§>k-

Example 2. Consider the delay difference equation (E) and assume that k=2
and that the coefficient sequence (pn)n>0 5 2-periodic with
po =€ and p1=-§——e,
27
where € is a number such that
'2",%‘ <e< —2?
‘We have
0<p1<i<po<£<1.
27 27
We see that (P) becomes

po<1l and p <1

and so condition (P) holds true. We also observe that (C;) reduces to
4 23

[A-p)1-p)]* <1-5 =5,

8 23} *
a-of-(z-9]<(®)
which can equivalently be written
4\2
(e = 2—7) > 0.
This means that condition (C1) is always satisfied. Next, we will show that condi-

tion (Cs) is also satisfied. To this end, we see that (Cz) becomes: There exists a
constant p € (0,1) so that, for any number «y € (¢, 1), it holds

(-8)(-8) <
{05472

ie.

ie.
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Let us define
F()—l(l—i)(l—%—e) for v € (e,1)
=5 % T e
Then we find
)= — L |12 16 8 _
F'(y)= 74[7 27’}’+3€(27 e)] for v € (g, 1).

Consider the quadratic equation

1
7’2-—g’y+3e(—§-—e) =0

2 27

in the complex plane. It is easy to see that this equation has exactly two distinct
real roots given by

s B EY Jae(B o) and = Eay/(2) —se( B e
R 27 27 Yo =97 27 27 ¢)

[Note that (£)” 3¢ (£ — €) > 0.] It follows immediately that 7* > 0 and 79 < 3.
Furthermore, by using the inequality € (£ —€) < (3)°, we can see that v* < &
and 7y > 22. Thus, we have 0 < v* < & and 12 < 7, < 48 and so it holds

0<y" <e<yy<L

Hence, we conclude that

16 8
72__74.35(—— )<0 for v € (&,70)

27 27
and
16 8
2
- — — — fi
Y 27’7-!-36(27 e)>0 or ¥ € (v, 1)
and consequenlty

F'(y) >0 for v € (6,7), and F'(y) <0 for v € (p,1).

This means that F is strictly increasing on (¢,7,), and F is strictly decreasing on
(70,1)- So, condition (Cs) holds if and only if

0< F(vy) <1

Clearly, F(v,) > 0. Furthermore, we obtain
1 € 2 —¢ 1 8
F —|1-— 1—27—-)=—’}’—6 [’y—(-———e)]
W) = ( ’Yo) ( Yo A O
1 8 8 1 . 8 8
= [ re(mo)] =mg (3-z) 2 (-]

1 , 8 > 16 \]_ 1 (., 8
3—78[3 (’Yn 2770) (’Yo 5770 =33 27 5770

{f
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8 8
2y — 57 2y — o7
2 - 16
375 3[37%0 — 3¢ (35 — 9]

2[4+ @239 -3

3{8 |3+ V@ -5 -9 -se(3 -9}
5+2/(8) -3(F -9

£ 5+ 8@ -2 -9-%E-9

By this expression of F(7,), it is a matter of elementary calculations to see that
F(vy) <1 if and only if

(B A (B N 30,
27 81 |\ 27 818 ~

i.e. if and only if

[(58?“) m“( 2 729]

But, this holds true, since from the inequality € (3% —€) < (27) it follows that

el S 2 I 2 A
27 729 T 729
We have thus proved that condition (Cs2) is satisfied. Now, it is clear that condition
(C3) holds by itself. Finally, we observe that (H) reduces to
1 4 1 8 4
§(po +p1) > 5 e 3 [e—l— (27 e)] > 5=

and consequently condition (H) fails to hold.

6. ADVANCED DIFFERENCE EQUATIONS

Let us consider the advanced difference equation
(E)* Tp41 = Tn — PnTnik =0,
where it is supposed that

kE>1

By a solution of (E)*, we mean a sequence of real numbers (,,)n>0 which satisfies
(E)* for all n > 0.

By using similar arguments with the ones used in proving the previous results
for the delay difference equation (E), we can establish the following results for the
advanced difference equation (E)*. We will state these results without proofs.

Proposition A. (I) A necessary condition for (E)* to have at least one nonoscil-
latory solution is (Pg).
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(IT1) Let (Po) be satisfied and assume that

n+k—1 1/(k_1) (k I)k__l
(Co)* gs;p[ 11 (l—p,-)J <1-=—
i=n+1

Then a necessary condition for (E)* to have at least one nonoscillatory solution is

(P)-

Lemma 1-A. Let (P) be satisfied and assume that condition (C,)* holds and
that:
(C2)* There exists a constant p € (0,1) so that, for any number v € (0,1) such
that p, <y for all large n, it holds
n+k—1 1
H (1 — —p,-) < py for all large n.
i=n+1 o
Then, for every nonoscillatory solution (z,)n>0 of (E)*, we have
im 2R o
n0Tn4l

Lemma 2-A. Assume that
n+k—1
(Cs)* liminf »" p; > 0.
i=n
Then, for every nonoscillatory solution (zn)n>0 of (E)*, there ezists a sequence
of nonnegative integers (ny),>o with lim n, = oo so that
= V=00

. Z. k
lim sup="*% < 0.
v—oo Tp,+41

Theorem A. Let (P) be satisfied and assume that conditions (C;)* and (Ca)*
hold. Moreover, suppose that condition (C3)* holds.
Then all solutions of (E)* are oscillatory.
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